If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+90x=0
a = 18; b = 90; c = 0;
Δ = b2-4ac
Δ = 902-4·18·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90}{2*18}=\frac{-180}{36} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90}{2*18}=\frac{0}{36} =0 $
| 8u=3u+÷35 | | 7x-8=4x-2 | | x^2-0.5x+3.75=0 | | 1.5(n+20=0.5(3n+60) | | 2×(x-3)=20 | | 9x-7/(6x+5)=6x-3/4x+2 | | 2x+45=69 | | 7^8x=35 | | (x^2-4)^1/2-(x-2)=(x^2-5x+6)^1/2 | | 7x+3x=27 | | 210-x=270 | | -4x+13=6x+3 | | 1/3=6/5v-1/2 | | 7z/4=6z/3 | | (200)=5•2^n | | (4x+192)/11=6 | | 2v+5v-6v=9 | | -2(x+5)÷4=8 | | -7/3w-5=3/4w-7/4 | | 4x+1927-11=6 | | 12u-12u+4u+3u=7 | | k-k+k=14 | | (4x+192)=66 | | 27+3x=32+2x | | 10y-8y+4=14 | | 4(x-14)=28 | | 19a-16a=12 | | q-q+3q+3=12 | | 0.2075=x+ | | 6t-t-3t=20 | | 3p+p-3p-p+2p=18 | | 4k-3k-k+3k=12 |